These functions allow you to specify your own set of mappings from levels in the data to aesthetic values.
Usage
scale_colour_manual(
...,
values,
aesthetics = "colour",
breaks = waiver(),
na.value = "grey50"
)
scale_fill_manual(
...,
values,
aesthetics = "fill",
breaks = waiver(),
na.value = "grey50"
)
scale_size_manual(..., values, breaks = waiver(), na.value = NA)
scale_shape_manual(..., values, breaks = waiver(), na.value = NA)
scale_linetype_manual(..., values, breaks = waiver(), na.value = "blank")
scale_linewidth_manual(..., values, breaks = waiver(), na.value = NA)
scale_alpha_manual(..., values, breaks = waiver(), na.value = NA)
scale_discrete_manual(aesthetics, ..., values, breaks = waiver())
Arguments
- ...
Arguments passed on to
discrete_scale
limits
One of:
NULL
to use the default scale valuesA character vector that defines possible values of the scale and their order
A function that accepts the existing (automatic) values and returns new ones. Also accepts rlang lambda function notation.
drop
Should unused factor levels be omitted from the scale? The default,
TRUE
, uses the levels that appear in the data;FALSE
includes the levels in the factor. Please note that to display every level in a legend, the layer should useshow.legend = TRUE
.na.translate
Unlike continuous scales, discrete scales can easily show missing values, and do so by default. If you want to remove missing values from a discrete scale, specify
na.translate = FALSE
.name
The name of the scale. Used as the axis or legend title. If
waiver()
, the default, the name of the scale is taken from the first mapping used for that aesthetic. IfNULL
, the legend title will be omitted.labels
One of:
NULL
for no labelswaiver()
for the default labels computed by the transformation objectA character vector giving labels (must be same length as
breaks
)An expression vector (must be the same length as breaks). See ?plotmath for details.
A function that takes the breaks as input and returns labels as output. Also accepts rlang lambda function notation.
guide
A function used to create a guide or its name. See
guides()
for more information.call
The
call
used to construct the scale for reporting messages.super
The super class to use for the constructed scale
- values
a set of aesthetic values to map data values to. The values will be matched in order (usually alphabetical) with the limits of the scale, or with
breaks
if provided. If this is a named vector, then the values will be matched based on the names instead. Data values that don't match will be givenna.value
.- aesthetics
Character string or vector of character strings listing the name(s) of the aesthetic(s) that this scale works with. This can be useful, for example, to apply colour settings to the
colour
andfill
aesthetics at the same time, viaaesthetics = c("colour", "fill")
.- breaks
One of:
NULL
for no breakswaiver()
for the default breaks (the scale limits)A character vector of breaks
A function that takes the limits as input and returns breaks as output
- na.value
The aesthetic value to use for missing (
NA
) values
Details
The functions scale_colour_manual()
, scale_fill_manual()
, scale_size_manual()
,
etc. work on the aesthetics specified in the scale name: colour
, fill
, size
,
etc. However, the functions scale_colour_manual()
and scale_fill_manual()
also
have an optional aesthetics
argument that can be used to define both colour
and
fill
aesthetic mappings via a single function call (see examples). The function
scale_discrete_manual()
is a generic scale that can work with any aesthetic or set
of aesthetics provided via the aesthetics
argument.
Color Blindness
Many color palettes derived from RGB combinations (like the "rainbow" color
palette) are not suitable to support all viewers, especially those with
color vision deficiencies. Using viridis
type, which is perceptually
uniform in both colour and black-and-white display is an easy option to
ensure good perceptive properties of your visualizations.
The colorspace package offers functionalities
to generate color palettes with good perceptive properties,
to analyse a given color palette, like emulating color blindness,
and to modify a given color palette for better perceptivity.
For more information on color vision deficiencies and suitable color choices see the paper on the colorspace package and references therein.
See also
The documentation for differentiation related aesthetics.
The documentation on colour aesthetics.
The manual scales and manual colour scales sections of the online ggplot2 book.
Other size scales: scale_size()
, scale_size_identity()
.
Other shape scales: scale_shape()
, scale_shape_identity()
.
Other linetype scales: scale_linetype()
, scale_linetype_identity()
.
Other alpha scales: scale_alpha()
, scale_alpha_identity()
.
Other colour scales:
scale_alpha()
,
scale_colour_brewer()
,
scale_colour_continuous()
,
scale_colour_gradient()
,
scale_colour_grey()
,
scale_colour_hue()
,
scale_colour_identity()
,
scale_colour_steps()
,
scale_colour_viridis_d()
Examples
p <- ggplot(mtcars, aes(mpg, wt)) +
geom_point(aes(colour = factor(cyl)))
p + scale_colour_manual(values = c("red", "blue", "green"))
# It's recommended to use a named vector
cols <- c("8" = "red", "4" = "blue", "6" = "darkgreen", "10" = "orange")
p + scale_colour_manual(values = cols)
# You can set color and fill aesthetics at the same time
ggplot(
mtcars,
aes(mpg, wt, colour = factor(cyl), fill = factor(cyl))
) +
geom_point(shape = 21, alpha = 0.5, size = 2) +
scale_colour_manual(
values = cols,
aesthetics = c("colour", "fill")
)
# As with other scales you can use breaks to control the appearance
# of the legend.
p + scale_colour_manual(values = cols)
p + scale_colour_manual(
values = cols,
breaks = c("4", "6", "8"),
labels = c("four", "six", "eight")
)
# And limits to control the possible values of the scale
p + scale_colour_manual(values = cols, limits = c("4", "8"))
p + scale_colour_manual(values = cols, limits = c("4", "6", "8", "10"))