`scale_x_binned()`

and `scale_y_binned()`

are scales that discretize
continuous position data. You can use these scales to transform continuous
inputs before using it with a geom that requires discrete positions. An
example is using `scale_x_binned()`

with `geom_bar()`

to create a histogram.

## Usage

```
scale_x_binned(
name = waiver(),
n.breaks = 10,
nice.breaks = TRUE,
breaks = waiver(),
labels = waiver(),
limits = NULL,
expand = waiver(),
oob = squish,
na.value = NA_real_,
right = TRUE,
show.limits = FALSE,
trans = "identity",
guide = waiver(),
position = "bottom"
)
scale_y_binned(
name = waiver(),
n.breaks = 10,
nice.breaks = TRUE,
breaks = waiver(),
labels = waiver(),
limits = NULL,
expand = waiver(),
oob = squish,
na.value = NA_real_,
right = TRUE,
show.limits = FALSE,
trans = "identity",
guide = waiver(),
position = "left"
)
```

## Arguments

- name
The name of the scale. Used as the axis or legend title. If

`waiver()`

, the default, the name of the scale is taken from the first mapping used for that aesthetic. If`NULL`

, the legend title will be omitted.- n.breaks
The number of break points to create if breaks are not given directly.

- nice.breaks
Logical. Should breaks be attempted placed at nice values instead of exactly evenly spaced between the limits. If

`TRUE`

(default) the scale will ask the transformation object to create breaks, and this may result in a different number of breaks than requested. Ignored if breaks are given explicitly.- breaks
One of:

`NULL`

for no breaks`waiver()`

for the default breaks computed by the transformation objectA numeric vector of positions

A function that takes the limits as input and returns breaks as output (e.g., a function returned by

`scales::extended_breaks()`

). Also accepts rlang lambda function notation.

- labels
One of:

- limits
One of:

`NULL`

to use the default scale rangeA numeric vector of length two providing limits of the scale. Use

`NA`

to refer to the existing minimum or maximumA function that accepts the existing (automatic) limits and returns new limits. Also accepts rlang lambda function notation. Note that setting limits on positional scales will

**remove**data outside of the limits. If the purpose is to zoom, use the limit argument in the coordinate system (see`coord_cartesian()`

).

- expand
For position scales, a vector of range expansion constants used to add some padding around the data to ensure that they are placed some distance away from the axes. Use the convenience function

`expansion()`

to generate the values for the`expand`

argument. The defaults are to expand the scale by 5% on each side for continuous variables, and by 0.6 units on each side for discrete variables.- oob
One of:

Function that handles limits outside of the scale limits (out of bounds). Also accepts rlang lambda function notation.

The default (

`scales::censor()`

) replaces out of bounds values with`NA`

.`scales::squish()`

for squishing out of bounds values into range.`scales::squish_infinite()`

for squishing infinite values into range.

- na.value
Missing values will be replaced with this value.

- right
Should values on the border between bins be part of the right (upper) bin?

- show.limits
should the limits of the scale appear as ticks

- trans
For continuous scales, the name of a transformation object or the object itself. Built-in transformations include "asn", "atanh", "boxcox", "date", "exp", "hms", "identity", "log", "log10", "log1p", "log2", "logit", "modulus", "probability", "probit", "pseudo_log", "reciprocal", "reverse", "sqrt" and "time".

A transformation object bundles together a transform, its inverse, and methods for generating breaks and labels. Transformation objects are defined in the scales package, and are called

`<name>_trans`

(e.g.,`scales::boxcox_trans()`

). You can create your own transformation with`scales::trans_new()`

.- guide
A function used to create a guide or its name. See

`guides()`

for more information.- position
For position scales, The position of the axis.

`left`

or`right`

for y axes,`top`

or`bottom`

for x axes.

## See also

Other position scales:
`scale_x_continuous()`

,
`scale_x_date()`

,
`scale_x_discrete()`