geom_rect()
and geom_tile()
do the same thing, but are
parameterised differently: geom_rect()
uses the locations of the four
corners (xmin
, xmax
, ymin
and ymax
), while
geom_tile()
uses the center of the tile and its size (x
,
y
, width
, height
). geom_raster()
is a high
performance special case for when all the tiles are the same size.
Usage
geom_raster(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
hjust = 0.5,
vjust = 0.5,
interpolate = FALSE,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE
)
geom_rect(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
linejoin = "mitre",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE
)
geom_tile(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
linejoin = "mitre",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE
)
Arguments
- mapping
Set of aesthetic mappings created by
aes()
. If specified andinherit.aes = TRUE
(the default), it is combined with the default mapping at the top level of the plot. You must supplymapping
if there is no plot mapping.- data
The data to be displayed in this layer. There are three options:
If
NULL
, the default, the data is inherited from the plot data as specified in the call toggplot()
.A
data.frame
, or other object, will override the plot data. All objects will be fortified to produce a data frame. Seefortify()
for which variables will be created.A
function
will be called with a single argument, the plot data. The return value must be adata.frame
, and will be used as the layer data. Afunction
can be created from aformula
(e.g.~ head(.x, 10)
).- stat
The statistical transformation to use on the data for this layer, either as a
ggproto
Geom
subclass or as a string naming the stat stripped of thestat_
prefix (e.g."count"
rather than"stat_count"
)- position
Position adjustment, either as a string naming the adjustment (e.g.
"jitter"
to useposition_jitter
), or the result of a call to a position adjustment function. Use the latter if you need to change the settings of the adjustment.- ...
Other arguments passed on to
layer()
. These are often aesthetics, used to set an aesthetic to a fixed value, likecolour = "red"
orsize = 3
. They may also be parameters to the paired geom/stat.- hjust, vjust
horizontal and vertical justification of the grob. Each justification value should be a number between 0 and 1. Defaults to 0.5 for both, centering each pixel over its data location.
- interpolate
If
TRUE
interpolate linearly, ifFALSE
(the default) don't interpolate.- na.rm
If
FALSE
, the default, missing values are removed with a warning. IfTRUE
, missing values are silently removed.- show.legend
logical. Should this layer be included in the legends?
NA
, the default, includes if any aesthetics are mapped.FALSE
never includes, andTRUE
always includes. It can also be a named logical vector to finely select the aesthetics to display.- inherit.aes
If
FALSE
, overrides the default aesthetics, rather than combining with them. This is most useful for helper functions that define both data and aesthetics and shouldn't inherit behaviour from the default plot specification, e.g.borders()
.- linejoin
Line join style (round, mitre, bevel).
Details
geom_rect()
and geom_tile()
's respond differently to scale
transformations due to their parameterisation. In geom_rect()
, the scale
transformation is applied to the corners of the rectangles. In geom_tile()
,
the transformation is applied only to the centres and its size is determined
after transformation.
Aesthetics
geom_tile()
understands the following aesthetics (required aesthetics are in bold):
Note that geom_raster()
ignores colour
.
Learn more about setting these aesthetics in vignette("ggplot2-specs")
.
Examples
# The most common use for rectangles is to draw a surface. You always want
# to use geom_raster here because it's so much faster, and produces
# smaller output when saving to PDF
ggplot(faithfuld, aes(waiting, eruptions)) +
geom_raster(aes(fill = density))
# Interpolation smooths the surface & is most helpful when rendering images.
ggplot(faithfuld, aes(waiting, eruptions)) +
geom_raster(aes(fill = density), interpolate = TRUE)
# If you want to draw arbitrary rectangles, use geom_tile() or geom_rect()
df <- data.frame(
x = rep(c(2, 5, 7, 9, 12), 2),
y = rep(c(1, 2), each = 5),
z = factor(rep(1:5, each = 2)),
w = rep(diff(c(0, 4, 6, 8, 10, 14)), 2)
)
ggplot(df, aes(x, y)) +
geom_tile(aes(fill = z), colour = "grey50")
ggplot(df, aes(x, y, width = w)) +
geom_tile(aes(fill = z), colour = "grey50")
ggplot(df, aes(xmin = x - w / 2, xmax = x + w / 2, ymin = y, ymax = y + 1)) +
geom_rect(aes(fill = z), colour = "grey50")
# \donttest{
# Justification controls where the cells are anchored
df <- expand.grid(x = 0:5, y = 0:5)
set.seed(1)
df$z <- runif(nrow(df))
# default is compatible with geom_tile()
ggplot(df, aes(x, y, fill = z)) +
geom_raster()
# zero padding
ggplot(df, aes(x, y, fill = z)) +
geom_raster(hjust = 0, vjust = 0)
# Inspired by the image-density plots of Ken Knoblauch
cars <- ggplot(mtcars, aes(mpg, factor(cyl)))
cars + geom_point()
cars + stat_bin2d(aes(fill = after_stat(count)), binwidth = c(3,1))
cars + stat_bin2d(aes(fill = after_stat(density)), binwidth = c(3,1))
cars +
stat_density(
aes(fill = after_stat(density)),
geom = "raster",
position = "identity"
)
cars +
stat_density(
aes(fill = after_stat(count)),
geom = "raster",
position = "identity"
)
# }