
Bin and summarise in 2d (rectangle & hexagons)
Source:R/stat-summary-2d.R
, R/stat-summary-hex.R
stat_summary_2d.Rd
stat_summary_2d()
is a 2d variation of stat_summary()
.
stat_summary_hex()
is a hexagonal variation of
stat_summary_2d()
. The data are divided into bins defined
by x
and y
, and then the values of z
in each cell is
are summarised with fun
.
Usage
stat_summary_2d(
mapping = NULL,
data = NULL,
geom = "tile",
position = "identity",
...,
bins = 30,
binwidth = NULL,
drop = TRUE,
fun = "mean",
fun.args = list(),
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE
)
stat_summary_hex(
mapping = NULL,
data = NULL,
geom = "hex",
position = "identity",
...,
bins = 30,
binwidth = NULL,
drop = TRUE,
fun = "mean",
fun.args = list(),
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE
)
Arguments
- mapping
Set of aesthetic mappings created by
aes()
. If specified andinherit.aes = TRUE
(the default), it is combined with the default mapping at the top level of the plot. You must supplymapping
if there is no plot mapping.- data
The data to be displayed in this layer. There are three options:
If
NULL
, the default, the data is inherited from the plot data as specified in the call toggplot()
.A
data.frame
, or other object, will override the plot data. All objects will be fortified to produce a data frame. Seefortify()
for which variables will be created.A
function
will be called with a single argument, the plot data. The return value must be adata.frame
, and will be used as the layer data. Afunction
can be created from aformula
(e.g.~ head(.x, 10)
).- geom
The geometric object to use to display the data, either as a
ggproto
Geom
subclass or as a string naming the geom stripped of thegeom_
prefix (e.g."point"
rather than"geom_point"
)- position
Position adjustment, either as a string naming the adjustment (e.g.
"jitter"
to useposition_jitter
), or the result of a call to a position adjustment function. Use the latter if you need to change the settings of the adjustment.- ...
Other arguments passed on to
layer()
. These are often aesthetics, used to set an aesthetic to a fixed value, likecolour = "red"
orsize = 3
. They may also be parameters to the paired geom/stat.- bins
numeric vector giving number of bins in both vertical and horizontal directions. Set to 30 by default.
- binwidth
Numeric vector giving bin width in both vertical and horizontal directions. Overrides
bins
if both set.- drop
drop if the output of
fun
isNA
.- fun
function for summary.
- fun.args
A list of extra arguments to pass to
fun
- na.rm
If
FALSE
, the default, missing values are removed with a warning. IfTRUE
, missing values are silently removed.- show.legend
logical. Should this layer be included in the legends?
NA
, the default, includes if any aesthetics are mapped.FALSE
never includes, andTRUE
always includes. It can also be a named logical vector to finely select the aesthetics to display.- inherit.aes
If
FALSE
, overrides the default aesthetics, rather than combining with them. This is most useful for helper functions that define both data and aesthetics and shouldn't inherit behaviour from the default plot specification, e.g.borders()
.
Computed variables
These are calculated by the 'stat' part of layers and can be accessed with delayed evaluation.
after_stat(x)
,after_stat(y)
Location.after_stat(value)
Value of summary statistic.
See also
stat_summary_hex()
for hexagonal summarization.
stat_bin2d()
for the binning options.
Examples
d <- ggplot(diamonds, aes(carat, depth, z = price))
d + stat_summary_2d()
# Specifying function
d + stat_summary_2d(fun = function(x) sum(x^2))
d + stat_summary_2d(fun = ~ sum(.x^2))
d + stat_summary_2d(fun = var)
d + stat_summary_2d(fun = "quantile", fun.args = list(probs = 0.1))
if (requireNamespace("hexbin")) {
d + stat_summary_hex()
d + stat_summary_hex(fun = ~ sum(.x^2))
}