Skip to content

This is a quick and dirty way to get map data (from the maps package) onto your plot. This is a good place to start if you need some crude reference lines, but you'll typically want something more sophisticated for communication graphics.


  database = "world",
  regions = ".",
  fill = NA,
  colour = "grey50",
  xlim = NULL,
  ylim = NULL,



map data, see maps::map() for details


map region


fill colour


border colour

xlim, ylim

latitudinal and longitudinal ranges for extracting map polygons, see maps::map() for details.


Arguments passed on to geom_polygon


Either "evenodd" or "winding". If polygons with holes are being drawn (using the subgroup aesthetic) this argument defines how the hole coordinates are interpreted. See the examples in grid::pathGrob() for an explanation.


Set of aesthetic mappings created by aes(). If specified and inherit.aes = TRUE (the default), it is combined with the default mapping at the top level of the plot. You must supply mapping if there is no plot mapping.


The data to be displayed in this layer. There are three options:

If NULL, the default, the data is inherited from the plot data as specified in the call to ggplot().

A data.frame, or other object, will override the plot data. All objects will be fortified to produce a data frame. See fortify() for which variables will be created.

A function will be called with a single argument, the plot data. The return value must be a data.frame, and will be used as the layer data. A function can be created from a formula (e.g. ~ head(.x, 10)).


The statistical transformation to use on the data for this layer. When using a geom_*() function to construct a layer, the stat argument can be used the override the default coupling between geoms and stats. The stat argument accepts the following:

  • A Stat ggproto subclass, for example StatCount.

  • A string naming the stat. To give the stat as a string, strip the function name of the stat_ prefix. For example, to use stat_count(), give the stat as "count".

  • For more information and other ways to specify the stat, see the layer stat documentation.


A position adjustment to use on the data for this layer. This can be used in various ways, including to prevent overplotting and improving the display. The position argument accepts the following:

  • The result of calling a position function, such as position_jitter(). This method allows for passing extra arguments to the position.

  • A string naming the position adjustment. To give the position as a string, strip the function name of the position_ prefix. For example, to use position_jitter(), give the position as "jitter".

  • For more information and other ways to specify the position, see the layer position documentation.


logical. Should this layer be included in the legends? NA, the default, includes if any aesthetics are mapped. FALSE never includes, and TRUE always includes. It can also be a named logical vector to finely select the aesthetics to display.


If FALSE, overrides the default aesthetics, rather than combining with them. This is most useful for helper functions that define both data and aesthetics and shouldn't inherit behaviour from the default plot specification, e.g. borders().


If FALSE, the default, missing values are removed with a warning. If TRUE, missing values are silently removed.


if (require("maps")) {

ia <- map_data("county", "iowa")
mid_range <- function(x) mean(range(x))
seats <-, lapply(split(ia, ia$subregion), function(d) {
  data.frame(lat = mid_range(d$lat), long = mid_range(d$long), subregion = unique(d$subregion))

ggplot(ia, aes(long, lat)) +
  geom_polygon(aes(group = group), fill = NA, colour = "grey60") +
  geom_text(aes(label = subregion), data = seats, size = 2, angle = 45)
#> Loading required package: maps

if (require("maps")) {
capitals <- subset(us.cities, capital == 2)
ggplot(capitals, aes(long, lat)) +
  borders("state") +
  geom_point(aes(size = pop)) +
  scale_size_area() +

if (require("maps")) {
# Same map, with some world context
ggplot(capitals, aes(long, lat)) +
  borders("world", xlim = c(-130, -60), ylim = c(20, 50)) +
  geom_point(aes(size = pop)) +
  scale_size_area() +